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Abstract

Distributed real-time embedded (DRE) systems perform
sequences of coordination and heterogeneous data manip-
ulation tasks in dynamic environments to meet specified
goals. Autonomous operation of DRE systems can bene-
fit from the integrated operation of (1) a decision-theoretic
Spreading Activation Partial Order Planner (SA-POP) that
combines task planning and scheduling in uncertain envi-
ronments with (2) a Resource Allocation and Control En-
gine (RACE) middleware framework that integrates multi-
ple resource management algorithms for (re)deploying and
(re)configuring task sequence components in these systems.
This paper demonstrates the effectiveness of SA-POP and
RACE in managing and executing mission goals for a multi-
satellite application. Our results show that combining plan-
ning, scheduling and resource constraints dynamically is
the key to implementing autonomy in DRE systems.

1. Introduction

Distributed real-time embedded (DRE) systems, such as
multi-satellite and multi-robot formations, often perform
sequences of heterogeneous data collection, manipulation
and coordination tasks to meet specified goals. For exam-
ple, weather prediction requires multiple satellites equipped
with different sensors flying coordinated missions to collect
and analyze large quantities of atmospheric and earth sur-
face data. The data collection, analysis, and earth transmis-
sion tasks may change during operation as previously col-
lected data indicates other factors or regions of interest, and
overall goals and priorities have to be modified with chang-
ing weather patterns or uncertainties attributed to chang-
ing resource availability. Moreover, limited bandwidth and
communication lag necessitate autonomous (re)planning

on-board the satellites to effectively achieve goals under
rapidly evolving conditions.

Presently task sequence implementations in DRE sys-
tems use component middleware [5], which automates re-
moting, lifecycle management, system resource manage-
ment, deployment, and configuration. In large DRE sys-
tems, the sheer number of component sequences poses a
combinatorial problem of mapping components to comput-
ing nodes [8]. The dynamic nature of the operations re-
quires runtime management and modification of deploy-
ments [4]. More effective solutions providing greater au-
tonomy must include planning and replanning capabilities,
and dynamic monitoring and runtime management to en-
sure chosen task sequences keep in sync with changing mis-
sion goals and resource availability.

For example, the NASA Earth Science Enterprise’s Mag-
netospheric Multi-Scale (MMS) [3] mission uses five coor-
dinated satellites as a solar-terrestrial probe. Each of the
satellites uses six sensors to collect electromagnetic and
particle data in the earth’s magnetosphere. The mission op-
erates in three data modes: slow, fast, and burst. These
data modes imply different goals, orbits, and data priori-
ties. Each satellite has to determine its task sequences to
achieve prescribed goals based on the current environmental
and system conditions, and revise its task sequences when
conditions change.

To achieve this degree of autonomy the system uses
an automated planner that can handle changing goal pre-
scriptions specified by mission scientists, and autonomous
mode changes driven by satellite position and the results
of data analysis. The planner handles multiple interact-
ing goals for coordinating the trajectory and orientation of
satellites, sensor selection and data collection for individ-
ual satellites, and data integration and compression to cre-
ate telemetry streams that are transmitted to the earth sta-
tions. In addition, the runtime computational architecture

Eighth International Symposium on Autonomous Decentralized Systems (ISADS'07)
0-7695-2804-X/07 $20.00  © 2007



includes dynamic monitoring schemes and resource reallo-
cation schemes to accommodate changing resource use dur-
ing operation. Replanning algorithms may be invoked to
accommodate changing goals and operating conditions.

To support DRE systems, we have developed a novel,
computationally efficient algorithm called the Spreading
Activation Partial Order Planner (SA-POP) for dynamic
(re)planning under uncertainty. SA-POP overcomes scal-
ing limitations of earlier AI algorithms for combined plan-
ning and resource allocation/scheduling [19]. This paper
describes our approach for combining SA-POP with a Re-
source Allocation and Control Engine (RACE), a reusable
component middleware framework that separates resource
allocation and control algorithms from the underlying mid-
dleware deployment, configuration, and control mecha-
nisms to enforce quality of service (QoS) requirements.

2. DRE system architecture

Figure 1 shows the system architecture for autonomous
operations of complex DRE applications using SA-POP
and RACE. The SA-POP planner starts with specified mis-
sion goals and generates operational strings that repre-
sent appropriate task sequences of high expected utility.
Each goal specification maps onto one operational string,
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Figure 1. SA-POP and RACE architecture

which includes the control (ordering) dependencies, the
data (producer/consumer) dependencies, and required start
and end times for tasks, if any. The operational strings also

contain suggested implementations for each task. RACE
performs the initial deployment by mapping task imple-
mentations onto computational resources, and then mon-
itors and manages runtime resource allocation to enforce
QoS requirements.

DRE systems in the domains of shipboard comput-
ing [15], avionics mission computing [17], and intelligence,
surveillance and reconnaissance [16] often represent appli-
cations as groups of domain-related tasks modeled as op-
erational strings. These strings are implemented by ex-
ecutable software components using component technolo-
gies, such as the OMG’s Lightweight CORBA Component
Model (CCM) [12] and Web Services. In our architecture,
components are implementation units that contain parame-
terized executable code with resource consumption profiles
(such as expected CPU and memory usage) and specified
QoS requirements (e.g., maximum latency and minimum
throughput.

For the MMS application to achieve a given set of goals
(e.g., study the physics of plasma reconnection and charged
particle acceleration), SA-POP uses a spreading activation
mechanism [1] to generates expected utility values for indi-
vidual tasks that can contribute to achieving specified goals.
Guided by these expected utility values, SA-POP’s planning
and scheduling algorithms generate partial order task se-
quences from which the operational strings are derived. The
individual tasks in a sequence are then mapped to available
executable software components, e.g. a data compression
task may be mapped into an appropriate compression algo-
rithm.

For a task to execute successfully, SA-POP must know
its preconditions, its input/output data stream, and other
effects it produces. Uncertainty in task execution and the
output generated is captured as conditional probabilities as-
sociated with the preconditions and effects of a task. The
input/output definitions, preconditions/effects, and related
conditional probabilities define the functional signature of
the task. Different parameterizations of a given component
may produce different functional signatures. Conversely,
different components that have the same functional signa-
ture may vary in time to completion, resource usage, and
QoS parameters.

We define a task as one or more parameterized compo-
nents with a single functional signature. The functional
signature of tasks and their dependencies are captured in
a task network, which is a directed graph that represents
both tasks and conditions (preconditions, data input, ef-
fects, and data output) with the links encoding the requi-
site probability information. The task network can be con-
structed by domain experts using domain-specific modeling
tools (e.g., the Generic Modeling Environment (GME) [6]).
With the task network and user-specified utility values for
goal conditions/data, a spreading activation mechanism, de-
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scribed in the next section, computes expected utility values
for each task.

To ensure applications do not violate resource con-
straints, SA-POP also requires resource signatures, i.e., re-
source consumption and execution time for each task imple-
mentation. A task may have multiple parameterized com-
ponent implementations with different resource signatures.
SA-POP uses a task map to associate tasks with their pa-
rameterized components and corresponding resource signa-
tures.

Operational strings produced by SA-POP are input to
RACE, which uses reusable algorithms to (1) deploy the
initial mapping of components to nodes and (2) monitor
system and application resource usage [14] to manage sys-
tem performance. RACE allocates resources to applica-
tion components based on their resource requirements and
QoS characteristics. Since component resource use and
end-to-end QoS for operational strings are sensitive to run-
time changes and changes in system performance, e.g.,
due to changes in resource availability and transient over-
load, RACE can also redeploy and/or reconfigure applica-
tion components using the implementation options available
in the task map to ensure the desired end-to-end QoS re-
quirements of operational strings are not violated.

3. SA-POP

Autonomous operations in DRE systems require two
components that operate in concert: (1) a planning and
scheduling system that responds to changes in goal spec-
ifications, environmental conditions, and changes brought
about by the interpretation of collected data, and (2) a re-
source allocation engine that can monitor resource usage
and QoS specifications to ensure that the plan execution
meets the desired goal specifications. This section describes
the SA-POP planner and scheduler, which include (1) a
decision-theoretic spreading activation mechanism to iden-
tify task sequences that maximize an expected utility mea-
sure for given a set of goals, and (2) an operational string
generation mechanism that uses the task expected utilities
and their implementation resource signatures to ensure that
the generated operational string have high expected utility
and meet resource, time, and other QoS constraints.

3.1. Spreading activation networks

A spreading activation task network, shown in Figure 2,
captures the links between task sequences and goal con-
ditions [1]. The network contains condition nodes (ovals)
and task nodes (rectangles) with directed links that indicate
the pre- and post-conditions for executing individual tasks.
Condition nodes are represented as Boolean variables with
associated probabilities that define the maximum likelihood
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Figure 2. An example task network

of that node achieving true/false values. Environmental/-
system conditions (e.g., a particular sensor is active) and
generated data (e.g., a data stream from a sensor) are repre-
sented as condition nodes. The data condition nodes repre-
sent the availability (true) or non-availability (false) of the
corresponding data.

The weight, wij , of the link from a condition node, ci,
to a task node, tj , defines the likelihood that tj succeeds in
given ci, i.e.

wij =
P (tsj |ci = true) − P (tsj |ci = false)
P (tsj |ci = true) + P (tsj |ci = false)

, (1)

where tsj indicates that task tj is successful. This encoding
supports hard constraints (weight = 1 (−1)), i.e., where the
condition must be true (false) for the task to succeed, and
soft constraints (weight < 1 (> −1)), i.e., where the true
(false) value of the condition increases the probability of
task success. Soft constraints can be used to model inferred
conditions in uncertain environments, where an actual pre-
condition can not be sensed directly but is probabilistically
related to other conditions that can be sensed. For example,
an imperfect (noisy) sensor for detecting an environmental
condition necessary to the success of a task can be modeled
using a soft constraint. The weight, wjk , of the link from a
task node, tj , to a condition node, ck, defines the probability
that ck will be true/false after tj executes, i.e.:

wjk =
{

P (ck = true|txj ) if tj sets ck = true
−P (ck = false|txj ) if tj sets ck = false,

(2)
where txj indicates that task tj is executed.

The likely contribution of a task toward a desired goal
is computed as an expected utility (EU), i.e., the product of
the task’s utility toward meeting the goal requirements and
its likelihood of success. Probability values are propagated
forward through the network from preconditions through
tasks to effects. Utility values are propagated backward
through the network from effects through tasks to precondi-
tions, which allows preconditions of potentially useful tasks
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to accumulate utility and makes them useful subgoals to-
ward meeting the specified goal requirements.

Two experiments using the task network in Figure 2 il-
lustrate the results of spreading activation with different
goals. In experiment 1, condition nodes C14 and C15 each
have a goal utility of 100, whereas in experiment 2, C15 is
replaced with C16, again with a goal utility of 100. Table 1
summarizes the resulting expected utility and probability
values for all task and condition nodes in the network. Note

Nodes EU Exp 1 EU Exp 2 Prob Exp 1 Prob Exp 2
A1 0 0 1.000 1.000
A2 0 0 0.975 0.975
A3 0 0 0.950 0.950
A4 0 0 1.000 1.000
A5 181 181 1.000 1.000
A6 0 0 0.926 0.926
A7 100 100 0.990 0.990
A8 162 162 1.000 1.000
A9 0 0 0.830 0.830

A10 180 90 0.900 0.900
A11 90 90 0.900 0.900
C1 0 0 1.000 1.000
C2 0 0 1.000 1.000
C3 181 181 1.000 1.000
C4 0 0 1.000 1.000
C5 0 0 1.000 1.000
C6 0 0 0.975 0.975
C7 0 0 0.950 0.950
C8 -95 -95 0 0
C9 -162 -162 0 0

C10 181 181 1.000 1.000
C11 0 0 0.926 0.926
C12 180 180 0.900 0.900
C13 0 0 0.830 0.830
C14 99 99 0.990 0.990
C15 90 0 0.900 0.900
C16 0 90 0.900 0.900

Table 1. Spreading activation results

that negative EU values indicate expected utility for a con-
dition being false instead of true, and the probability values
listed are probabilities of success for tasks and probabilities
of a true value for conditions. Figures 3 and 4 illustrate the
different plans that result based on expected utilities in the
two experiments.
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Figure 3. Resultant plan in experiment 1

Since C15 is not a goal in experiment 2, A10 only ac-
cumulates utility from C14. As a result, A7 has a higher
expected utility than A10 due to its higher probability of
success. Therefore, it is chosen to achieve C14 instead of
A10. Moreover, A11 is also necessary to achieve the goal
of C16 in experiment 2, while A5 and A8 are common to
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Figure 4. Resultant plan in experiment 2

both plans as they achieve subgoals necessary for following
tasks.

3.2. Operational string generation

For the NASA MMS and similar DRE systems, the fewer
the constraints imposed by an operational string, the easier
it is to make initial deployment decisions and manage re-
sources at runtime. To facilitate these activities, we adopt a
modified Partial Order Causal Link (POCL) design [18] to
generate operational strings. The least commitment strate-
gies typical of partial order planning allow SA-POP to im-
pose relatively few constraints compared to other popular
planning techniques, such as state space search and con-
straint satisfaction based planners. Recent research [9] also
indicates that in many cases the performance of partial or-
der planning can be brought up to par with these other ap-
proaches by applying appropriate heuristics.

SA-POP leverages information from the partial order
planning process when applying resource constraints and
finding resource violations. In DRE systems, such as the
MMS scenario, many data manipulation tasks operate over
long time windows with a required start time, but the
end time is dynamically determined by ongoing analysis
of the data, which limits the effectiveness of many popu-
lar scheduling approaches such as timetabling [13], edge-
finding [2], and classical energetic reasoning [7].

Rather than primarily relying on start/end time window
manipulation, SA-POP leverages the ordering constraints
common to partial order plans. These constraints are used to
create precedence graphs [7], which partition all other tasks
into sets based on their ordering with respect to a particu-
lar task under consideration. SA-POP then applies a mod-
ified version of Laborie’s energy precedence and balancing
constraint propagation techniques [7] to specify four dif-
ferent kinds of “links,” which specify an ordering between
two task instances. A Causal Link indicates one task must
execute before the other based on a system/environmental
condition. A Data Link indicates both tasks must execute
simultaneously because they both operate on the same data
stream. A Threat Link indicates one task must execute be-
fore the other. A Scheduling Link indicates one task must
execute before the other. The links are imposed during
scheduling to prevent potential resource violations, and are
valid within, as well as across, operational strings. We also
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define one additional type of constraint on task instances
in an operational string, a Time Constraint. This constraint
specifies a required start-by or end-by time, and it is speci-
fied in the goal input for a required condition.

SA-POP also maintains additional time and ordering in-
formation, such as the Time Window, which consists of
an earliest time and latest time for each task instance. A
Ranking(a, b) is a comparison between task instances a and
b, which describes the order in which they will be executed
given the current knowledge of the plan. There are four
rankings used by SA-POP: Before (a will complete its ex-
ecution before b begins executing), After (reciprocal of the
Before relation), Simultaneous(both a and b will start and
end their executions strictly at the same times), and Un-
ranked (a and b overlap or potentially overlap).

The rankings between all pairs of tasks are maintained
in a precedence graph [7]. The precedence graph main-
tained by SA-POP differs from Laborie’s definition primar-
ily in that it is defined between pairs of task instances rather
than events, which are the individual start and end times
of task instances. This simplification allows more efficient
scheduling calculations for discrete resources, e.g., memory
which is used during a task execution and then freed. SA-
POP currently does not deal with reservoir resources, which
are resources, such as battery power, that can be arbitrarily
produced or consumed.

SA-POP generates operational strings using mutually re-
cursive planning and scheduling algorithms with backtrack-
ing. Each step in the generation of an operational string
involves the four recursive algorithms described below:

Algorithm: Plan. SA-POP begins with the mission goals
as the set of open conditions. Since data manipulation tasks
are resource intensive and execute concurrently with other
tasks on the same data stream, SA-POP gives priority to
data flow conditions, which enables early detection of ir-
resolvable resource violations in a nascent plan, thereby
pruning the search space. In choosing a task to satisfy the
current open condition, SA-POP prefers tasks with higher
expected utility values, weighted by their probability of
achieving the condition. There is also a threshold on this
probability value, and those tasks falling below the thresh-
old are ranked strictly by probability rather than expected
utility. This ranking represents a tradeoff between the to-
tal expected utility, which may accumulate from multiple
goals, and the likelihood of achieving a particular subgoal.

Algorithm: ResolveThreats. This algorithm recursively
resolves causal link threats, as in traditional partial order
planning. Specifically, a causal link is of the form T 1-
(C1 = V alueX)→ T 2, meaning task instance T 1 achieves
condition C1 = V alueX as a precondition for task in-
stance T 2. A causal link threat occurs when another task
instance, T 3, has an effect of C1 = V alueY , where
V alueX �= V alueY , and is not ordered (by the current set

of causal, data, and threat links) with respect to T 1 and T 2.
To resolve this threat, T 3 must be ordered either before T 1
(demotion) or after T 2 (promotion). ResolveThreats thus
attempts to recursively resolve all causal link threats by pro-
motion or demotion.

Algorithm: Schedule. With this algorithm, SA-POP
moves from partial order planning to scheduling that meets
stated resource requirements. SA-POP first determines the
change in potential resource usage for each implementa-
tion (from the task map) of a task instance, given current
rankings from the precedence graph. The resource impact
score of an implementation is the sum across all resources
of the percentage of resource capacity that would be uti-
lized if all potentially overlapping task instances were to be
executed concurrently. The implementation with the least
impact on potential resource availability, as measured by
the resource impact score, is chosen to implement the task
instance, which is analogous to the least constraining value
heuristic often used in general constraint satisfaction.

SA-POP also uses Laborie’s energy precedence and bal-
ance constraint propagation techniques [7] modified for
planning in DRE systems. These techniques are largely
complementary and apply to different precedence sets with
respect to a given task instance. The energy precedence
constraint propagation can constrict time windows (and
consequently derive more accurate rankings), even with rel-
atively loose time windows that are prevalent early in plan-
ning. It applies to a task instance’s start (end) time window
based on the resource usage of all other task instances in its
Before (After) precedence set.

SA-POP’s balance constraint propagation applies to a
task instance based on the other task instances in its Un-
ranked and Simultaneous precedence sets. With the discrete
resources, precedence graph, and links used by SA-POP,
the constraint propagation differs from the Laborie calcu-
lations [7] with one major simplification: for discrete re-
sources, only the start and end events of (potentially) over-
lapping task instances (Unranked and Simultaneous prece-
dence sets) must be considered in the balance constraint.
With this simplification, SA-POP uses Laborie’s balance
constraint propagation [7] to constrict time windows, im-
pose necessary scheduling links, and detect irresolvable re-
source violations.

Algorithm: ResolveRes. This algorithm implements SA-
POP’s search for resolutions to potential resource viola-
tions. SA-POP employs two significant simplifications in
the calculation of resource levels for events: (1) a potential
resource conflict can only be resolved by imposing an order-
ing constraint (scheduling link) between two task instances
(i.e., by ordering an end event before a start event) and (2)
given (1), only a worst case (minimum) resource level and
best case (maximum) resource level need be calculated for
each task instance (corresponding to the level when its start
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event occurs).
The heuristic for choosing the most significant re-

source violations is provided by a task instance critical-
ity measure: crit(x) = max(0,−Lmin(x))/(Lmax(x) −
Lmin(x)Q∆tstart(x) where, L is a resource level, Q is
a resource capacity, and ∆t is the length of a time win-
dow. After choosing the most critical task instance, x, a
set of task instances from Unranked(x) that can be or-
dered before x is chosen to reduce the criticality of x be-
low the specified threshold. The heuristic for choosing
these task instances is provided by preferring those with
highest pair-wise criticality values given by: crit(x, y) =
−commit(y, x)/R(y) where, R is a resource usage value,
and commit(y, x) is a measure of the commitment implied
by ordering the end event of y before the start event of
x as defined in [7]. This heuristic provides a least com-
mitment strategy (consistent with SA-POP’s preference for
minimally constrained operational strings) by balancing the
preference for low commitment with the preference for high
reduction in potential resource violations. With these algo-
rithms, SA-POP employs backtracking whenever an irre-
solvable resource violation is discovered, or an attempt is
made to impose a link inconsistent with the rankings in the
precedence graph.

Table 2 is an example description of task map with im-
plementations for the tasks in 2. In this scenario, C12 is

Task Implementation Resource Usage
A1 Impl1 1
A2 Impl2 1
A3 Impl3 1
A4 Impl4 1
A5 Impl5 1
A6 Impl6 2
A7 Impl7 4
A8 Impl8 1
A9 Impl9 5
A10 Impl10 1
A11 Impl11 1

Table 2. Example task map

a data condition, implying that A8 produces a data stream
that can be consumed by A10 and/or A11. Using the ex-
pected utilities calculated for experiment 1 in the previous
section, and a single resource of capacity 5 units for the
system, Figure 5 illustrates the operational string generated
by SA-POP. In this figure, the dashed arrow between A7

Figure 5. Operational string (capacity 5)

and A8 indicates a scheduling link, while other arrows indi-
cate the causal links and the data link between A8 and A11.
Because A8 and A11 are data manipulation tasks and no
additional time constraints were imposed, they operate con-
tinuously until the end of the operational string’s execution.
Initially A7 would be unranked with respect to A8 and A11.
Their combined resource usage of 2 and A7’s resource us-
age of 4, however, would violate system resource capacities
if they operated concurrently. Therefore, SA-POP imposes
the scheduling link between A7 and A8 to ensure resource
constraints are honored.

To illustrate the potential trade-off between expected
utility and resource constraints, consider a similar system
with the same goals but with a resource capacity of only 3
units. Figure 6 shows the operational string generated by
SA-POP in this scenario. The tighter resource constraints

Figure 6. Operational string (capacity 3)

do not allow the inclusion of A7 to achieve C14, so SA-
POP is forced to use the lower expected utility task A10
due to the limited resource availability.

4. Resource Allocation and Control Engine

The architecture of RACE and its interplay with SA-
POP is illustrated in Figure 1. RACE performs autonomous
resource (re)allocation and (re)configuration of QoS set-
tings of components that are part of the operational strings
generated by SA-POP such that the QoS requirements
of the operational strings are met. RACE is built atop
of CIAO and DAnCE, which are open-source (see www.
dre.vanderbilt.edu) implementations of the OMG
Lightweight CCM [12], Deployment and Configuration
(D&C) [11], and Real-time CORBA [10] specifications.
RACE provides a range of resource allocation and control
algorithms that use middleware deployment and configura-
tion mechanisms to allocate resources to operational strings
and control system performance after operational strings
have been deployed. In particular, it uses Resource Mon-
itors and ApplicationQoSMonitors, which are implemented
as CCM components, to track system resource utilization
and application QoS respectively.

RACE’s algorithms determine how to (re)deploy an ap-
plication specified by operational strings and ensure desired
QoS requirements are met, while maintaining resource uti-
lization within desired bounds at all times. The allocation
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algorithms determine the initial component deployment by
determining the best mapping of these components to the
appropriate target nodes based on the availability of system
resources. For example, an allocation algorithm could ap-
portion CPU resources to components in such a way that
avoids saturating these resources. Likewise, RACE’s con-
trol algorithms adapt the execution of an operational strings’
components at runtime in response to changing environ-
ments and variations in resource availability and/or demand.
For example, a control algorithm could (1) modify an ap-
plication’s current operating mode, (2) dynamically update
component implementations, and/or (3) redeploy all or part
of an operational string’s components to other target nodes
to meet end-to-end QoS requirements.

RACE uses mechanisms provided by the underlying
middleware to perform the allocation and control decisions
made by its algorithms. For example, RACE uses standard
mechanisms defined by the Lightweight CORBA Compo-
nent Model (CCM) [12] to (1) (re)deploy and (re)configure
application components, (2) transition application compo-
nents from idle states to operational states and monitor the
performance of the DRE system, and (3) modify compo-
nents and/or operational strings to realize the adaptation de-
cisions of control algorithms.
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Figure 7. Architecture of RACE

As shown in Figure 7 the RACE architecture consists of
the following entities that are implemented as CCM com-
ponents using CIAO and deployed via DAnCE:

Resource Monitors are CCM components that track re-
source utilization in a domain. One or more Resource-
Monitors are associated with each domain resource, such
as CPU and memory utilization monitors on each node and
network bandwidth utilization monitors on interconnects.

ApplicationQoSMonitors are CCM components that
track the performance of application components by observ-
ing QoS properties, such as throughput and latency. One

or more ApplicationQoSMonitors are associated with each
type of application component.

The TargetManager [14] is a CCM component defined
in the D&C specification [11] that receives periodic re-
source utilization updates from ResourceMonitors within a
domain. It uses these updates to track resource usage of all
resources within the domain. The TargetManager provides
a standard interface for retrieving information pertaining to
resource consumption of each component or assembly in
the domain, as well as the domain’s overall resource utiliza-
tion.

The DeploymentManager is an assembly of CCM com-
ponents that encapsulates and coordinates one or more al-
location and control algorithms. This manager deploys
assemblies by allocating resources to individual compo-
nents in an assembly. After assemblies are deployed, the
DeploymentManager manages the performance of (1) op-
erational strings and (2) domain resource utilization. This
manager ensures desired performance of the operational
strings by performing the following actions to the compo-
nents that make up the operational strings: (1) (re)allocating
resources to the component, (2) modifying component pa-
rameters such as execution mode, and/or (3) dynamic re-
placing the component implementations.

5. Discussion and lessons learned

This section summarizes our experiences combining the
decision-theoretic, resource-constrained planning of SA-
POP with the component allocation and runtime manage-
ment of RACE to produce an efficient and scalable archi-
tecture for autonomous operation of DRE systems in dy-
namic and uncertain domains. SA-POP produces partial-
order plans that contain sufficient information to be instan-
tiated with parameterized component implementations that
do not violate coarse-grained resource constraints.

In the MMS system, for example, an instantiation of
SA-POP on each satellite considers the computational re-
sources, such as CPU, memory, and communication band-
width to be monolithic, discrete resources. In actuality,
there are multiple nodes with individual CPU and mem-
ory capacities within each satellite. In general, each task
only uses a small fraction of these resources, so the course-
grained resource constraints used by SA-POP helps ensure
that RACE can find valid deployments for components on
the real node resources.

Through the association of multiple functionally equiva-
lent implementations for each task in the task map, RACE
can find valid (re)allocations by substituting the original
task components suggested by SA-POP with ones that are
more resource friendly under the current conditions. In the
unusual case that no such allocation is possible, RACE pro-
vides feedback to SA-POP indicating its failure to find a
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valid allocation due to one or more resource constraints. If
this occurs, SA-POP generates a new operational string that
uses less resources, but has lower expected utility, without
requiring a repetition of the spreading activation.

Autonomous operation of satellites with limited comput-
ing capacity requires efficient algorithms to handle the com-
binatorial problems of planning, scheduling, and allocation.
The loose coupling of SA-POP and RACE through a feed-
back loop, enables operational string generation as a search
through a smaller space of potential resource-committed
plans. The search is computationally less intensive than if
resources were considered at the fine-grained node level.

Similarly, RACE does not have to consider the cascad-
ing task choices of planning to find a valid allocation, so its
search space is also limited to a manageable size. More-
over, SA-POP only considers the feasibility of resource al-
location in generating operational strings, while RACE can
consider the harder resource optimization problem, but lim-
its it to a given operational string. The limited size and com-
plexity of the search spaces used in SA-POP and RACE, as
well as the flexibility afforded by the task map, yields an
architecture that can operate with limited computational re-
sources, while scaling to relatively large planning and allo-
cation problems without becoming intractable.

In generating the operational string from mission goals,
SA-POP takes into account domain uncertainty by prefer-
ring operational strings of high expected utility. Rather than
attempting the often intractable problem of finding opera-
tional strings with the highest overall expected utility, SA-
POP’s generates operational strings using a greedy approxi-
mation algorithm. The greedy choice of high expected util-
ity tasks still yields a robust application as specified by the
resulting operational string, but does not require the much
greater search time needed to find the optimal solution.

For individual satellites to operate autonomously, they
must be able to recognize and react to changes in local con-
ditions. To this end, RACE monitors application perfor-
mance and domain resource utilization using its Application
Monitors and Resource Monitors after operational string de-
ployment. If the performance of an operational string falls
below its QoS requirement, RACE’s control algorithms take
corrective actions to achieve the specified QoS requirement.

For example, a control algorithm could (1) modify input
parameters of one or more parameterized components of the
operational string, (2) dynamically update task implementa-
tions from the choices available in the task map, and/or (3)
redeploy all or part of an application’s components to other
target nodes to meet end-to-end QoS requirements. These
actions help ensure that the QoS requirements of each oper-
ational string are met and resource utilization is maintained
within specified bounds. If these control adaptations can
not correct/prevent a QoS or resource violation, however,
RACE notifies SA-POP, triggering replanning.

In addition to varying levels of resource utilization, run-
time changes can occur in the environmental/system con-
ditions represented in the task network. RACE continu-
ously monitors these conditions and provides feedback on
changes to SA-POP. SA-POP uses this information to incre-
mentally update the probability values of conditions in the
network, running forward propagation as necessary. Most
changes correspond to the expected behavior of applica-
tions specified by operational strings. When a critical, un-
expected change does occur, it can be handled more quickly
because task network is updated. Critical changes are those
that render the current application deployment nonfunc-
tional for the achievement of some mission goal(s). As
in the case of resource shortages, SA-POP performs plan
repair by continuing operational string extraction with an
open condition corresponding to the changed condition.

Revisions to mission goals, e.g., due to onboard data
analysis or revisions from mission scientists on the ground,
are other runtime changes that may require modifications to
deployed applications. The new/changed utility values for
goals are inserted into the task network and the spreading
activation mechanism is used to update it. These changes
generally occur only for a small subset of the mission goals
and thus only need be propagated through a relatively small
portion of the full network. Moreover, only backpropaga-
tion of utility is necessary since probability values already
forward propagated through the network are unchanged.

With the updated task network, a new operational string
is generated using the same process described in Sec-
tion 3.2. In this case, the operational string generation
usually takes much longer than for plan repair because it
must be completely regenerated in order to take advantage
of the changed expected utilities. Fortunately, revised mis-
sion goals rarely render the current application deployment
nonfunctional for all goals. In fact, unless the goals have
changed drastically, the current operational string is proba-
bly still of high utility. As such, an immediate response to
goal changes is not as critical as in the cases necessitating
plan repair, so the time to extract a completely new opera-
tional string is insignificant in practice.

6. Concluding remarks

The paper described how we combined our SA-POP
decision-theoretic planner for dynamic (re)planning with
resource constraints under uncertainty with our RACE
framework for resource allocation and control in au-
tonomous and/or semi-autonomous DRE systems. We de-
tailed SA-POP’s spreading activation structure, which is a
mechanism for determining the potential value of tasks us-
ing a decision-theoretic scheme, and our algorithm for gen-
erating operational strings based on expected utilities and
resource constraints.
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Empirical evaluation of our algorithm in the con-
text of RACE demonstrated the effectiveness of our ap-
proach, even with the relatively limited resources avail-
able to individual elements of a DRE system. Our exper-
iments showed how SA-POP and RACE can together fa-
cilitate autonomous operation by responding to dynamic
changes through (re)planning of task sequences and the
(re)deployment/(re)configuration of components. RACE
and SA-POP are open-source software that can be obtained
from deuce.doc.wustl.edu/Download.html as
part of the CIAO middleware.
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